05.02.2019

Matemātikas mācību joma pamatizglītībā

Mērķis: matemātiskā pratība, kas nozīmē, ka skolēns situācijās ar matemātisku, citu mācību jomu un reālu kontekstu, jēgpilni lietojot matemātikas instrumentus:

  • veic aprēķinus,
  • apstrādā datus,
  • lieto figūru īpašības,
  • saskata sakarības starp lielumiem,
  • spriež vispārīgi un matemātiski modelē,
  • problēmsituācijās izvēlas atbilstošu pieeju vai paņēmienu,
  • apzinās pierādījuma nepieciešamību un veido pamatotus spriedumus.

(MK noteikumi Nr. 747, IV nodaļa, 7. punkts, 7.5. apakšpunkts.)

Lielās idejas: matemātikas mācību jomas saturs ir strukturēts 6 lielajās idejās, kas aptver sasniedzamos rezultātus skolēnam šādos saturiskajos laukos: matemātikas valoda; matemātikai raksturīgās stratēģijas un spriešana; skaitļi, darbības ar tiem; algebras elementi un sakarības; figūras; dati un statistikas elementi.

Papildus matemātikas mācību jomai šīs jomas sasniedzamie rezultāti skolēnam ir aktuāli un tiks īstenoti gan dabaszinātņu un tehnoloģiju mācību jomā, gan citās mācību jomās un priekšmetos. Tādēļ ir svarīgi, ka matemātikas skolotāji sadarbojas ar citiem skolotājiem mācību satura plānošanā.

Būtiskākie uzsvari pilnveidotajā mācību saturā un pieejā:

  • ir pārskatīta pieeja atsevišķu satura jautājumu mācīšanā, lai veidotu skolēnos dziļāku izpratni par matemātiskām darbībām (piemēram, divām dalīšanas nozīmēm);
  • matemātikas saturā tiek iekļauta matemātikai raksturīgu paņēmienu, stratēģiju apguve apzinātā līmenī. Piemēram, pilnveidotajā mācību saturā 3. klasei noteikts, ka skolēns lieto paņēmienu “Mēģinu un pārbaudu”, un 6. klasei – paņēmienus “Spriežu no beigām” un “Sadalu problēmu daļās”;
  • izpratne par matemātisku jēdzienu/lielumu ir primāra attiecībā pret vingrināšanos šī lieluma skaitliskās vērtības aprēķināšanā, kas ir nepieciešama, bet sekundāra. Piemēram, vispirms skolēnam jāizveido izpratne par laukumu un laukuma īpašībām, un tikai pēc tam tiek aprēķināta laukuma skaitliskā vērtība;
  • ir svarīgi, ka skolēns vispirms veido “skaitļu izjūtu” (skaitļu apjēgšanu) un tikai pēc tam apgūst darbības ar tiem. Piemēram, pilnveidotajā mācību saturā iekļautas daudzveidīgas skolēna darbības negatīvo “skaitļu izjūtas” veidošanai – skolēns nosauc skaitļa “kaimiņus”, skaita uz priekšu/atpakaļ no jebkura negatīva skaitļa pa 2, pa 5, pa 10 un tml.;
  • tiek respektēti dažādi/alternatīvi pareizi skolēnu risinājumi, jo īpaši sākumskolā, tādējādi uzsverot domāšanas procesa un intereses par matemātiku nozīmi;
  • lielāka vērība ir pievērsta matemātikas valodai, izpratnes veidošanai par atsevišķu matemātisko simbolu, apzīmējumu nozīmi. Piemēram, skolēns saprot, ka zīme “-” (mīnuss) matemātikā tiek lietota vismaz trīs nozīmēs;
  • atsevišķos satura jautājumos ir mazināta sadrumstalotība. Piemēram, 4. klases temats par matemātisko modelēšanu aptver vairākas satura tēmas – skaits, samaksa un cena; laiks, ceļš un vidējais ātrums; taisnstūra malu garumi un laukums –, uzsverot, ka matemātiskais modelis ir viens un tas pats.

Papildresursi:

Jautājumi mācību satura veidotājiem.

Atbild Skola2030 matemātikas mācību jomas vadītājs, vecākais eksperts Jānis Vilciņš.

– Ar kādiem izaicinājumiem esat saskārušies satura izstrādē? Kā grūtības ir pārvarētas?

– Lielākais izaicinājums ir plānot skolas matemātikas saturu no skolēna pieredzes un izziņas procesa skatupunkta. Viens no darba rīkiem, ko veidojam, ir pēctecīga un saistīta galveno jēdzienu un apgūstamo prasmju matrica no 1. līdz 12. klasei. Pašlaik dažu satura jautājumu apguvei tiek atvēlēts nesamērīgi daudz laika, notiek metodiski nepamatota atkārtošanās, kamēr dažu jautājumu apguvei atvēlētais laiks nav pietiekams un/vai  skolēnu iepriekšējās zināšanas nav pietiekamas, lai to apgūtu ar izpratni.

Izpratnes un prasmju līdzsvarotību un mijiedarbību matemātikas mācīšanā es nosauktu kā vēl vienu izaicinājumu. Izpratnei jākļūst par tikpat svarīgu satura elementu kā prasmes. Katra temata sasniedzamajos rezultātos ir formulētas idejas (kas skolēnam jāsaprot) un prasmes (ko skolēns var izdarīt). Piemēram, 2. klasē tiek apgūta prasme Mēra garumu cm, dm, mm, m, pareizi novietojot lineālu, mērlenti, bet tikpat nozīmīgs rezultāts ir ideja, kas jāsaprot skolēnam: Jo mazāka mērvienība, jo vairāk reižu tā ietilpst dotajā lielumā, mērot garumu dažādās vienībās, skaitliskās vērtības atšķiras.

Visbeidzot, kā trešo lielāko izaicinājumu minēšu to, ka noteikti matemātikai raksturīgi problēmrisināšanas paņēmieni jeb skolēna personiskās stratēģijas kļūst par vienu no mācīšanās mērķiem.

– Vai ir kas īpašs, kas būtu jāzina jūsu mācību jomas skolotājiem?

– Kopīgais aicinājums – mazāk skolēnu neizprastas, mehāniskas darbības, vairāk apzinātas un kognitīvi daudzveidīgas vingrināšanās, apgūstamo jēdzienu un savu darbību skaidrošanas  un pamatošanas.

Divi vēlējumi 1.–3. klašu skolotājiem kopumā par matemātikas mācīšanu un skolēnu attieksmes pret matemātiku veidošanu. Pirmais – matemātikā vairākumā gadījumu nav vienīgā pareizā atrisinājuma veida, un reizēm matemātikā var būt arī vairāki pareizi atrisinājumi. Otrais – “cietie rieksti” jeb grūtākie uzdevumi nav skolēnu spēju tests, bet gan līdzeklis visu skolēnu domāšanas prasmju veidošanai.

Pamatskolā matemātikā vairāk jāienāk vārdiskajam tekstam, savas matemātiskās darbības un jēdzienu skaidrošanai. Darīt var arī nesaprotot. Tikai aicinot skolēnu skaidrot savu darbību, rezultātu, metodi, skolotājs var uzzināt, vai viņš ir sapratis. Tas nav nejauši, ka vārds “skaidro” jaunajā pamatskolas matemātikas standartā ir viens no visbiežāk lietotajiem darbības vārdiem. Un otrs, ko vēlos uzsvērt, – pamatošana ir matemātikas būtība.

– Kas jums ir sagādājis vislielāko gandarījumu šajā darbā?

– Lielākais gandarījums pašlaik ir par pamatskolas standarta gala versiju. Ceru līdzīgu gandarījumu izjust gan par pamatskolas programmas galīgo versiju, gan par vidusskolas standartu.